What is the derivative of sinx^tanxsinxtanx?

2 Answers
Mar 10, 2018

cos(x^(tan(x)))x^(tan(x))(tan(x)/x+ln(x)*sec^2(x))cos(xtan(x))xtan(x)(tan(x)x+ln(x)sec2(x))
[Assuming you meant sin(x^(tan(x)))sin(xtan(x))]

Explanation:

We have:

d/dx[sin(x^(tan(x)))]ddx[sin(xtan(x))] We use the chain rule:

d/dx[g(h(x))]=g'(h(x))*h'(x)

Also remember that d/dx[sin(x)]=cos(x)

=>cos(x^(tan(x)))*d/dx[x^(tan(x))]

Here is a rule that you may not be familiar with:

d/dx[(f(x))^(g(x))]=(f(x))^(g(x))*d/dx[ln(f(x))*g(x)]

=>cos(x^(tan(x)))*x^(tan(x))*d/dx[ln(x)*tan(x)]

Use the product rule:

d/dx(f(x)*g(x))=f'(x)*g(x)+f(x)*g'(x)

=>cos(x^(tan(x)))x^(tan(x))(d/dx[ln(x)]*tan(x)+ln(x)*d/dx(tan(x)))

Remember that:

d/dx(ln(x))=1/x

d/dx(tan(x))=sec^2(x)

=>cos(x^(tan(x)))x^(tan(x))(1/x*tan(x)+ln(x)*sec^2(x))

=>cos(x^(tan(x)))x^(tan(x))(tan(x)/x+ln(x)*sec^2(x))

Mar 10, 2018

(sinx)^(tanx)*(((cosx)(tanx))/(sinx)+ln(sinx)*sec^2x)
[Assuming you meant (sinx)^(tanx)]

Explanation:

We have:

d/dx[(sinx)^(tanx)]

We use a rule you may be unfamiliar with:

d/dx[(f(x))^(g(x))]=(f(x))^(g(x))*d/dx[ln(f(x))*g(x)]

Therefore, we have:

(sinx)^(tanx)*d/dx[ln(sinx)*tanx]

The product rule:

d/dx(f(x)*g(x))=f'(x)*g(x)+f(x)*g'(x)

=>(sinx)^(tanx)*(d/dx[ln(sinx)]*tanx+ln(sinx)*d/dx[tanx])

Remember that:

d/dx[f(g(x))]=f'(g(x))*g'(x)

d/dx(lnx)=1/x

d/dx(tanx)=sec^2x

=>(sinx)^(tanx)*(1/(sinx)*d/dx(sinx)*tanx+ln(sinx)*sec^2x)

Another thing to remember here:

d/dx(sinx)=cosx

=>(sinx)^(tanx)*(1/(sinx)*cosx*tanx+ln(sinx)*sec^2x) Simplify.

=>(sinx)^(tanx)*(((cosx)(tanx))/(sinx)+ln(sinx)*sec^2x)

This is our answer!