What is the derivative of the exponential function y = e^(4tansqrtx)y=e4tanx?

1 Answer
Apr 14, 2015

dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/sqrtxdydx=2e4tanxsec2xx

Solution

y=e^(4tansqrtx)y=e4tanx

Differentiating both sides with respect to 'x'

dy/dx=d/dx(e^(4tansqrtx))dydx=ddx(e4tanx)

dy/dx=e^(4tansqrtx)d/dx(4tansqrtx)dydx=e4tanxddx(4tanx)

dy/dx=e^(4tansqrtx).4sec^2sqrtx.d/dx(sqrtx)dydx=e4tanx.4sec2x.ddx(x)

dy/dx=4e^(4tansqrtx)sec^2sqrtx(1/2x^(1/2-1))dydx=4e4tanxsec2x(12x121)

dy/dx=4/2e^(4tansqrtx)sec^2sqrtx(x^((1-2)/2))dydx=42e4tanxsec2x(x122)

dy/dx=2e^(4tansqrtx)sec^2sqrtx(x^((-1)/2))dydx=2e4tanxsec2x(x12)

dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/(x^((1)/2))dydx=2e4tanxsec2xx12

dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/sqrtxdydx=2e4tanxsec2xx