dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/sqrtxdydx=2e4tan√xsec2√x√x
Solution
y=e^(4tansqrtx)y=e4tan√x
Differentiating both sides with respect to 'x'
dy/dx=d/dx(e^(4tansqrtx))dydx=ddx(e4tan√x)
dy/dx=e^(4tansqrtx)d/dx(4tansqrtx)dydx=e4tan√xddx(4tan√x)
dy/dx=e^(4tansqrtx).4sec^2sqrtx.d/dx(sqrtx)dydx=e4tan√x.4sec2√x.ddx(√x)
dy/dx=4e^(4tansqrtx)sec^2sqrtx(1/2x^(1/2-1))dydx=4e4tan√xsec2√x(12x12−1)
dy/dx=4/2e^(4tansqrtx)sec^2sqrtx(x^((1-2)/2))dydx=42e4tan√xsec2√x(x1−22)
dy/dx=2e^(4tansqrtx)sec^2sqrtx(x^((-1)/2))dydx=2e4tan√xsec2√x(x−12)
dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/(x^((1)/2))dydx=2e4tan√xsec2√xx12
dy/dx=(2e^(4tansqrtx)sec^2sqrtx)/sqrtxdydx=2e4tan√xsec2√x√x