What is the derivative of y = x^cos(x)y=xcos(x)?

2 Answers
Jan 15, 2017

dy/dx = x^cosx(-sinxlnx + cosx/x)dydx=xcosx(sinxlnx+cosxx)

Explanation:

y = x^cosxy=xcosx

Take the natural logarithm of both sides.

lny = ln(x^cosx)lny=ln(xcosx)

Use the logarithm law for powers, which states that loga^n = nlogalogan=nloga

lny = cosxlnxlny=cosxlnx

Use the product rule to differentiate the right hand side. d/dx(cosx) = -sinxddx(cosx)=sinx and d/dx(lnx)ddx(lnx).

1/y(dy/dx) = -sinx(lnx) + cosx(1/x)1y(dydx)=sinx(lnx)+cosx(1x)

1/y(dy/dx) = -sinxlnx + cosx/x1y(dydx)=sinxlnx+cosxx

dy/dx = (-sinxlnx + cosx/x)/(1/y)dydx=sinxlnx+cosxx1y

dy/dx = x^cosx(-sinxlnx + cosx/x)dydx=xcosx(sinxlnx+cosxx)

Hopefully this helps!

Jan 15, 2017

d/(dx) x^(cosx) = x^(cosx) (cosx/x -sinx lnx )ddxxcosx=xcosx(cosxxsinxlnx)

Explanation:

You can write:

x^(cosx) = (e^lnx)^(cosx) = e^(lnxcosx)xcosx=(elnx)cosx=elnxcosx

so:

d/(dx) x^(cosx) = d/(dx) (e^(lnxcosx)) ddxxcosx=ddx(elnxcosx)

using the chain rule:

d/(dx) x^(cosx) = e^(lnxcosx) d/(dx) (lnxcosx)ddxxcosx=elnxcosxddx(lnxcosx)

then the product rule:

d/(dx) x^(cosx) = x^(cosx) (cosx/x -sinx lnx )ddxxcosx=xcosx(cosxxsinxlnx)