What is the derivative of y=(e^(2x))/(e^(2x)+1)y=e2xe2x+1?

2 Answers
Apr 9, 2018

Please look below.

Explanation:

y = e^(2x)/(e^(2x)+1)y=e2xe2x+1

= (e^(2x)+1-1)/(e^(2x)+1)=e2x+11e2x+1

= (e^(2x)+1)/(e^(2x)+1)- 1/(e^(2x)+1)=e2x+1e2x+11e2x+1

= 1 - 1/(e^(2x)+1)=11e2x+1

= -(e^(2x) + 1)^-1=(e2x+1)1

y' = (e^(2x)+1)^-2 xx e^(2x) xx 2

y' = (2e^(2x))/(e^(2x)+1)^2

Apr 9, 2018

(dy)/(dx)=(2e^(2x))/((e^(2x)+1)^2)

Explanation:

We have,

y=(e^(2x))/(e^(2x)+1)

"Using "color(green)"Quotient Rule" ,

(dy)/(dx)=((e^(2x)+1)d/(dx)(e^(2x))-e^(2x)d/(dx) (e^(2x)+1))/((e^(2x)+1)^2)

=((e^(2x)+1)(2e^(2x))-e^(2x)*2(e^(2x)))/((e^(2x)+1)^2)

=(2e^(2x)(e^(2x)+1-e^(2x)))/((e^(2x)+1)^2)

=(2e^(2x))/((e^(2x)+1)^2)