If #A= <2 , 6 ># and #B= <-1,6 >#, what is #||A+B|| -||A|| -||B||#?
1 Answer
Jan 16, 2016
Explanation:
- To find the magnitude of any vector
#vecV=< x,y >"# in the standard form (its tail is at the origin), just apply the formula:
#|V|=sqrt(x^2+y^2)# - To find the sum of two vectors
#A# and#B# , add the x-coordinates and the y-coordinates separately. #vec(A+B)=< 1,12># #||A||=sqrt(2^2+6^2)=sqrt(40)#
#||B||=sqrt((-1)^2+6^2)=sqrt(37)#
#||A+B||=sqrt(1^2+12^2)=sqrt(145)# #||A+B||−||A||−||B||=" "sqrt(145)-sqrt(40)-sqrt(37)#
#=24.45#