What is cot^4theta/(1-cos^4theta)cot4θ1cos4θ in terms of non-exponential trigonometric functions?

2 Answers
Mar 14, 2018

(cottheta*cottheta)/(sintheta*sintheta*sintheta*sintheta)cotθcotθsinθsinθsinθsinθ

Explanation:

This answer is incorrect!

cot^4 theta = cos^4 theta/sin^4 thetacot4θ=cos4θsin4θ

1-cos^2 theta = sin^2 theta1cos2θ=sin2θ

Here is where the mistake was made:
cot^4 theta / (1-cos^4 theta) = (cos^4 theta/sin^4 theta)/(sin^2 theta*cos^2 thetacot4θ1cos4θ=cos4θsin4θsin2θcos2θ

(cos^4 theta/sin^4 theta)/(sin^2 theta*cos^2 theta) = (cos^2 theta/sin^4 theta)/(sin^2 theta)cos4θsin4θsin2θcos2θ=cos2θsin4θsin2θ

(cos^2 theta/sin^4 theta)/(sin^2 theta/1)cos2θsin4θsin2θ1 or cos^2 theta/sin^4 theta*1/sin^2 thetacos2θsin4θ1sin2θ

Multiply across

cos^2 theta/sin^6 thetacos2θsin6θ = cot^2 theta/sin^4 thetacot2θsin4θ

Expand to get rid of the exponents

(cottheta*cottheta)/(sintheta*sintheta*sintheta*sintheta)cotθcotθsinθsinθsinθsinθ

I hope this is the form you were looking for!

Mar 14, 2018

(cosx/sinx*cosx/sinx*cosx/sinx*cosx/sinx)/((sinx*sinx+sinx*sinx*cosx*cosx))cosxsinxcosxsinxcosxsinxcosxsinx(sinxsinx+sinxsinxcosxcosx)

Explanation:

cot^4x/(1-cos^4x)=cot4x1cos4x=
cot^4x/((1-cos^2x)(1+cos^2x))=cot4x(1cos2x)(1+cos2x)=
cot^4x/((sin^2x)(1+cos^2x))=cot4x(sin2x)(1+cos2x)=

(cosx/sinx*cosx/sinx*cosx/sinx*cosx/sinx)/((sinx*sinx+sinx*sinx*cosx*cosx))cosxsinxcosxsinxcosxsinxcosxsinx(sinxsinx+sinxsinxcosxcosx)