Question #0d91d

2 Answers
Jun 17, 2016

#y= (3/4)(2-x^2).#

Explanation:

Recall the identity : #sin^2theta=(1-cos2theta)/2.#

Hence,
#y=3sin^2theta=(3/2)(1-cos2theta).#..............(1)

But, it is given that #x=sqrt(2cos2theta),#
so that #x^2/2=cos2theta.#

Now, putting this value of #cos2theta# in (1), we get,

#y= (3/2)(1-x^2/2)=(3/4)(2-x^2).#

Jun 17, 2016

#y=(x^2-2)/-2#

Explanation:

#y=3sin^2theta#
#x=sqrt(2cos2theta)#
#x^2=2cos2theta#
=#2cos^2theta-2sin^2theta#
=#2cos^2theta-2/3y#
=#2(1-1/3y)-2/3y#
=#2-4/3y#
so
#y=-3/4(x^2-2)#