Question #c2e32

1 Answer
Aug 20, 2016

Considering the ratio

(sin8phi-sin10phi)/(cos10phi-cos8phi)sin8ϕsin10ϕcos10ϕcos8ϕ

Using following identities to simplify the above ratio

color(red)(sinc-sind=2cos((c+d)/2)sin((c-d)/2))sincsind=2cos(c+d2)sin(cd2)

and

color(red)(cosc-cosd=2sin((c+d)/2)sin((d-c)/2))cosccosd=2sin(c+d2)sin(dc2)

Now the ratio

(sin8phi-sin10phi)/(cos10phi-cos8phi)sin8ϕsin10ϕcos10ϕcos8ϕ

=(cancel2cos((8phi+10phi)/2)cancelsin((8phi-10phi)/2))/(cancel2sin((10phi+8phi)/2)cancelsin((8phi-10phi)/2))

=(cos9phi)/(sin9phi)=cot9phi

So we can write

(sin8phi-sin10phi)/(cos10phi-cos8phi)=cot9phi

=>(sin8phi-sin10phi)=cot9phi(cos10phi-cos8phi)

proved