Find the range of sinx(sinx+cosx)?

1 Answer
Apr 1, 2017

Range of sinx(sinx+cosx) is [1212,12+12]

Explanation:

sinx(sinx+cosx)

= sinx2(sinx12+cosx12)

= 2sinx(sinxcos45+cosxsin45)

= 2sinxsin(x+45)

= 22(2sinxsin(x+45))

= 22(2sinxsin(x+45))

= 12[cos(x(x+45)cos(x+(x+45)]

= 12[cos(45)cos(2x+45)]

= 12[12cos(2x+45)]

= 1212cos(2x+45)

As range of cos(2x+45) is [1,1]

range of sinx(sinx+cosx) or 1212cos(2x+45) is

[1212,12+12]