Find the range of #sinx(sinx+cosx)#?

1 Answer
Apr 1, 2017

Range of #sinx(sinx+cosx)# is #[1/2-1/sqrt2,1/2+1/sqrt2]#

Explanation:

#sinx(sinx+cosx)#

= #sinxsqrt2(sinx1/sqrt2+cosx1/sqrt2)#

= #sqrt2sinx(sinxcos45^@+cosxsin45^@)#

= #sqrt2sinxsin(x+45^@)#

= #sqrt2/2(2sinxsin(x+45^@))#

= #sqrt2/2(2sinxsin(x+45^@))#

= #1/sqrt2[cos(x-(x+45^@)-cos(x+(x+45^@)]#

= #1/sqrt2[cos(-45^@)-cos(2x+45^@)]#

= #1/sqrt2[1/sqrt2-cos(2x+45^@)]#

= #1/2-1/sqrt2cos(2x+45^@)#

As range of #cos(2x+45^@)# is #[-1,1]#

range of #sinx(sinx+cosx)# or #1/2-1/sqrt2cos(2x+45^@)# is

#[1/2-1/sqrt2,1/2+1/sqrt2]#