How do you express sin4θsin3θcos2θ in terms of non-exponential trigonometric functions?

1 Answer
Apr 30, 2016

sin4θsin3θcos2θ

=sin3θ(sinθcos2θ)

now
sin3θ=3sinθ4sin3θsin3θ=34sinθ14sin3θ
and cos2θ=12(1+cos2θ)

Putting these in the main expression it becomes
=sin3θ(sinθcos2θ)
=(34sinθ14sin3θ)(sinθ12(1+cos2θ))
=(34sin2θ14sin3θsinθ38sinθ38sinθcos2θ+18sin3θ14sin3θcos2θ)

=(38(1cos2θ)14sin3θsinθ38sinθ38sinθcos2θ+18sin3θ14sin3θcos2θ)
=(38(1cos2θ)18(cos2θcos4θ)38sinθ316(sin3θsinθ)+18sin3θ18(sin5θsinθ))

Pl proceed for simlification