How do you express #sin(pi/12) * cos(pi/4 ) # without products of trigonometric functions?

1 Answer
Jun 19, 2016

#(sqrt2/4)sqrt(2 - sqrt3)#

Explanation:

#P = sin (pi/12).cos (pi/4)#
Trig table --> #cos (pi/4) = sqrt2/2#.
Then P can be expressed as: # P = (sqrt2/2)sin (pi/12)#
We can evaluate #sin (pi/12)#, using the trig identity:
#cos 2a = 1 - 2sin^2 a#
#cos (pi/6) = sqrt3/2 = 1 - 2sin^2 (pi/12)#
#2sin^2 (pi/12) = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 (pi/12) = (2 - sqrt3)/4#
#sin (pi/12) = +- sqrt(2 - sqrt3)/2#
Take the positive value because #sin pi/12# is positive
Finally,
#P = (sqrt2/4).sqrt(2 - sqrt3)#