If A= <5 , 6 >A=<5,6> and B= <-1,7 >B=<1,7>, what is ||A+B|| -||A|| -||B||||A+B||||A||||B||?

1 Answer
Jun 16, 2017

The answer is =-1.28=1.28

Explanation:

The vectors are

vecA=<5,6>A=<5,6>

vecB=<-1,7>B=<1,7>

vecA+vecB=<5,6> + <-1,7> =<4,13>A+B=<5,6>+<1,7>=<4,13>

The modulus of vecAA is

||vecA|| = ||<5,6>||=sqrt(5^2+6^2)=sqrt(25+36)=sqrt61A=||<5,6>||=52+62=25+36=61

The modulus of vecBB is

||vecB|| = ||<-1,7>||=sqrt((-1)^2+7^2)=sqrt(1+49)=sqrt50B=||<1,7>||=(1)2+72=1+49=50

The modulus of (vecA+vecB)(A+B) is

||vecA+vecB||=||<4,13>||=sqrt(4^2+13^2)=sqrt(16+169)=sqrt185A+B=||<4,13>||=42+132=16+169=185

Therefore,

||vecA+vecB||-||vecA||-||vecB||=sqrt185-sqrt61-sqrt50=-1.28A+BAB=1856150=1.28