If A= <7 , 2>A=<7,2> and B= <-7, -1 >B=<7,1>, what is ||A+B|| -||A|| -||B||||A+B||||A||||B||?

2 Answers
Mar 19, 2016

color(red)||A+B|| - color(blue)(||A|| -||B||) = color(red)1-color(blue).209 ~~ .791||A+B||||A||||B||=1.209.791

Explanation:

Given:A= <7 , 2>A=<7,2> and B= <-7, -1 >B=<7,1>,
Required: color(red)||A+B|| - color(blue)(||A|| -||B||)||A+B||||A||||B||
The red is the magnitude of the vector addition and the blue is
the sum of the magnitude of vectors.
color(red)(Red)Red
vec(A)+vec(B) = <0, 1>A+B=<0,1>
and the magnitude is: color(red)(||A+B||=1)||A+B||=1

color(blue)(Blue)Blue
||A||= sqrt(7^2+2^2) =sqrt(53) ||A||=72+22=53
||A||= sqrt(7^2+1^2) =sqrt(50) ||A||=72+12=50
color(blue)(||A|| -||B||=sqrt(53)-sqrt(50)~~ .209||A||||B||=5350.209

color(red)(Red)-color(blue)(Blue) = color(red)1-color(blue).209 ~~ .791RedBlue=1.209.791

Jul 1, 2018

||A+B|| - ||A|| - ||B|| = color(orange)(13.3512||A+B||||A||||B||=13.3512

Explanation:

A=((7),(2))

B=((-7),(-1))

A+B=((7),(2)) +((-7),(-1))=((0),(1))

||A+B||=sqrt((0)^2+(1)^2)= 1

||A||=sqrt((7)^2+(2)^2)=sqrt(53)

||B||=sqrt((-7)^2+(-1)^2)=sqrt(50)

:.||A+B|| - ||A|| - ||B|| = color(orange)(1-sqrt(53)- sqrt(50) ~~ - 13.3512