What is #cos^2thetasin^2theta# in terms of non-exponential trigonometric functions?
1 Answer
Explanation:
First express purely in terms of
#cos^2 theta sin^2 theta = cos^2 theta (1 - cos^2 theta) = cos^2 theta - cos^4 theta#
Since this is of degree
Using De Moivre's formula:
#cos 4 theta + i sin 4 theta#
#=(cos theta + i sin theta)^4#
#=cos^4 theta + 4i cos^3 theta sin theta -6 cos^2 theta sin^2 theta - 4i cos theta sin^3 theta + sin^4 theta#
#=(cos^4 theta -6 cos^2 theta sin^2 theta + sin^4 theta) + (4 cos^3 theta sin theta - 4 cos theta sin^3 theta)i#
So looking at the Real part, we find:
#cos 4 theta#
#=cos^4 theta -6 cos^2 theta sin^2 theta + sin^4 theta#
#=cos^4 theta - 6 cos^2 theta (1-cos^2 theta) + (1-cos^2 theta)(1-cos^2 theta)#
#=cos^4 theta - 6 cos^2 theta+6 cos^4 theta+1 - 2 cos^2 theta +cos^4 theta#
#=8 cos^4 theta-8cos^2 theta + 1#
#=-8(cos^2 theta - cos^4 theta) + 1#
Subtract
#cos 4 theta - 1 = -8(cos^2 theta - cos^4 theta)#
Divide both sides by
#1/8(1-cos 4 theta) = cos^2 theta - cos^4 theta#
Voila!